平行四边形的面积微课教学设计
作为一名辛苦耕耘的教育工作者,就有可能用到教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编为大家收集的平行四边形的面积微课教学设计,欢迎阅读,希望大家能够喜欢。
平行四边形的面积微课教学设计1教学目标:
1、知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。
2、过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。
3、情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。
教学重点:
探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:
平行四边形面积公式的推导方法――转化与等积变形。
教学方法:
利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过剪、移、拼找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。
教具、学具准备:
多媒体课件、平行四边形纸片、长方纸卡,剪刀等。
教学过程:
一、情境激趣
二、自主探究
古时候,有一位老地主给他的两个儿子分地,大儿子分了一块长方形的地,小儿子分得了一块平行四边形的地。可是两个儿子都觉得自己分的地太少,对方的土地多,为此两个儿子争论不休。老地主十分苦恼,不知如何是好。这个难题同学们想想办法能解决吗?
在很久以前,我们的祖先计算平行四边形的面积和计算长方形的面积一样,采取了数方格的方法。老师也为你们准备了一个格子图,你们来数一数它们的面积是多少?
1、数方格,比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)小组合作,学生用数方格的方法计算两个图形的面积并填写研究报告单。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦吗?
(学生:麻烦,有局限性。)
(5)观察表格,你发现了什么?
出示表格平行四边形底底边上的高面积
长方形长宽面积
(6)引导学生交流自己的发现。
反馈:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
(7)提出猜想:猜想:平行四边形的面积=底高是否适合所有的平行四边形面积呢?
2、动手操作,验证猜想。
(1)提出要求:小组分工合作,利用三角尺、剪刀,动手剪一剪、拼一拼,把平行四边形想办法转变成一个长方形。完成后和小组的同学互相交流自己的方法。
(2)学生展示,平行四边形变成长方形的方法。(沿着平行四边形的高将平行四边形剪成两个直角梯形,拼成一个长方形。)
(3)观察并思考:
①拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
②拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(5)交流反馈,引导学生得出结论
①形状变了,面积没变。
②拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(6)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
观察面积公式,要求平行四边形的面积必须知道哪两个条件?
(平行四边形的底和高)
(7)请大家想一想,我们是怎样推导出平行四边形的面积公式的?
(转化图形的形状)
(8)探究活动小结:我们把平行四边形转化成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
3、运用公式,解决问题。
(1)出示例1
例1、学校1栋楼前停车场,每个车位都是一个平行四边形,它的底是6米,高是4米,一个车位的面积有多少平方米?
(2)学生独立完成并反馈答案。
三、看书释疑P79~81
四、巩固运用
1、判断,平行四边形面积的概念。
(1)、两个平行四边形的高相等,它们的面积就相等( )
(2)、平行四边形的高不变,底越长,它的面积就越大( ) 。
(3)、一个平行四边形的底是9厘米,高是3分米,它的面积是27平方厘米。
2、计算,平行四边形的面积。
3、拓展1,你有几种方法求下面图形的面积?
4、拓展2 比较,等底等高的平行四边形的面积。
五、课堂总结
通过这节课的学习,你有哪些收获?(学生自由回答。)
平行四边形的面积微课教学设计2教学内容:
人教版五年级上册第六单元86页---88页,
教学目标:
1、通过学生自主探索,动手实践,突出平行四边形面积公式,能正确运用平行四边形的面积公式进行相关的计算。
2、 让学生经历平行四边形面积公式的推导过程,通过操作观察比较等活动初步认识,转化的数学思想,发展学生的空间观念。
3、培养学生,观察分析,概括推导,和解决实际问题的能力。
4、使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。
教学重点:
理解,并掌握平行四边形的面积计算公式,会计算平行四边形的面积,
教学难点:
通过转化的方法理解平行四边形的面积计算公式、
教学过程:
一、回忆旧知,谈话导入
1、今天我们来平行四边形面积的计算,在以前我们学过哪些图形面积的计算?(长方形和正方形)是怎样算的呢?
2、出示,方格纸中的长方形,每小格代表1平方厘米。这个长方形的面积怎样计算呢?
平行四边形的面积微课教学设计3一、谈话导入
1、组织课堂纪律
2、比眼力游戏:哪个图形面积大
学生1、
学生2、
学生3、
学生4.、
师演示,全体同学看
3、小结:转化法: ……此处隐藏7311个字……习本,写在练习本上,不用画表格。
3、提问:谁来数一数,告诉大家你是怎么数的?
4、追问:有没有什么方法能帮助我们数的快一点呢?
预设:沿平行四边形的高剪一块,拼到另一边。
5、这种“一剪,一拼”的方法,数学上称为“割补法”。
(二)渗透转化,进一步探究。
1、不数方格,能不能计算平行四边形的面积?
预设:转化成学过的长方形。
2、渗透思想:他提到了一个数学学习过程中常用到的一种思想方法“转化”思想。把新知识转化成旧知识。
3小结:刚才我们是用数格子的方法知道的,如果没有方格……(引导学生)
(三)观察、猜想、验证深入探究
1、回忆一下,长方形的面积计算公式是?(板书:长方形面积=长×宽)
长方形面积和谁有关?
2、提问:长、宽中任意一个变化会导致面积变化吗?
由此,你们猜测一下平行四边形的面积可能会和谁有关?
预设1:邻边(如果很多学生说与邻边有关就分组讨论)
预设2:底和高
3、演示:拉动它会有什么变化?什么变?什么不变?(拿着一个可以变动的平行四边形)面积变小了,邻边___?底___?高___?周长___?
4、小结:可见平行四边形的面积和……有关,那么我们能不能用转化的的方法推导出平行四边形的面积?
推理:
光说没有说服力,拿出练习本和事先准备好的平行四边形卡片,把推导过程体现出来。把平行四边形转化成学过的图形。
学生动手(教师巡视)
(投影展示)
提问:你是怎么把平行四边形转化成长方形的?(学生上台展示)
预设:沿高剪开,把三角形向右平移,再拼成长方形。
师:条理清晰,通过“一剪,一拼”把平行四边形转化成长方形,这种方法叫?
对了,割补法,利用割补法转化成长方形就能计算面积了。
5、(课件动画演示)看看如何将平行四边形转化成长方形。
(四)合作交流,推导出平行四边形面积
1、原来的平行四边形和转化后的长方形,它们之间有什么关系?平行四边形的面积怎么求?
预设:
2、汇报
平行四边形的底和长方形的()相等。(板书)底→长
平行四边形的()和长方形的()相等。(板书)高→宽
这两个图形的面积()。(板书)平行四边形面积=长方形面积
3、怎样计算平行四边形的面积?
预设:平行四边形面积=底×高(板书×)
(五)渗透符号意识,公式符号化
1、a表示什么?h呢?
如果用大写字母S表示面积,用字母a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成?
预设:S=ah(板书)
2、要求平行四边形的面积要知道什么?
3小结:到这里的学习,你们知道了什么?
【设计意图】本环节充分体现了新知识转化成旧知识的“转化”思想。第一通过引导学生回忆推导长方形面积的方法来计算平行四边形的面积,即借助方格,初步探索平行四边形的面积。,经历剪一剪、拼一拼的探索过程,渗透“割补法”。第二进一步探索,在没有方格的情况下,引导学生“转化”,将平行四边形转化成长方形,新知转化成旧知。第三循序渐进,引导学生观察、猜想、验证,借助可以拉动的平行四边形可以直观的让学生感受到什么变了,什么没变,让学生在理解的基础上学习,递进的学习,逐步推导。第四建立在上一步的基础上发展,通过新课程提倡的合作交流的学习方式进行,找出平行四边形与转化后的长方形的关系,并推导出平行四边形的面积计算公式。最后,公式符号化,发展学生的符号思想。
三、巩固练习
1、抛出洋葱微课里的题
2、平行四边形花坛的底是6m,高是4m,它的面积是多少?
3、89页第2题(注重底与高对应)计算下面每个平行四边形的面积。
4、90页第6题
【设计意图】根据学生掌握知识的规律,针对本课的教学目标,我设计的练习题由浅入深,循序渐进。通过这些练习是为了让学生会运用平行四边形的知识去解决简单的数学问题。在第2题练习中发展创新意识,让学生明白“对应关系”即“底”和“高”对应,引导学生在理解的基础上牢固的掌握知识,能根据具体需要迅速再现出来。
四、课堂总结
通过今天的学习你有什么收获?你还有什么疑问?
【设计意图】课堂总结,让学生说一说收获,还有什么疑问,实现知识的系统小结,是为了学生更好的学习和改善教师教学的重要部分。可以系统的知道学生学到了什么,哪方面还需要巩固。为后续教学提供方向。
五、作业布置
略
平行四边形的面积微课教学设计8内容简析:
平行四边行的面积是人教版五年级上册第六单元第一节内容,本视频以面积公式的推导和公式的应用为主要内容。
教学目标:
1、使学生经历探索平行四边形面积计算公式的推导过程,渗透转化的思想。
2、掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。
教学重点:
探索并掌握平行四边形的面积计算公式,渗透转化的思想。
教学设想:
学习完平行四边行的面积,接下来要学习三角形、梯形的面积。所以通过这个视频要给学生渗透转化的思想,为下节课的学习打好基础。让学生理解、领悟,体验计算公式的推导生成显得尤为重要。
教学过程:
一、复习引入
同学们三年级时我们学习了长方形、正方形的面积,今天我们一起来研究平行四边形的面积。
二、质疑猜想
师:对于面积,大家并不陌生。我们已经学过长方形和正方形等平面图形的面积,例如:长方形的面积=长×宽。
质疑:平行四边形的面积怎样计算得出呢?
三、操作验证
用数方格的方法发现长方形和平行四边形的面积相等。要求:不满一格的算半格。
2、验证面积=底×高
那平行四边形的面积与底和高会不会有关系呢?现在我们利用转化的方法来验证一下。
将平行四边形沿着底边上的任意一条高剪开,平移,可以拼成一个长方形。则平行四边形的面积就是长方形的面积,平行四边形的底就是长方形的长,平行四边形的高就是长方形的宽。长方形的面积=长×宽,所以平行四边形的面积=底×高。如果用字母S表示面积,a表示底,h表示高。则S=ah。
四、公式应用
学会了平行四边形的面积公式,我们可以用它来解决生活中的一些实际问题。
有一个平行四边形的草坪,底是6米,高是4米,它的面积是多少?
S=ah=6×4=24(平方米)
五、全课总结
回想一下刚才我们的学习过程,你有什么收获?